Surface-to-subsurface velocity projection for shallow water currents

نویسندگان

  • Colin Y. Shen
  • Thomas E. Evans
چکیده

Sea surface currents in coastal oceans are accessible to continuous direct observations by shore-based high-frequency Doppler radar systems. Inferring current structure in shallow water from such surface current observations is attempted. The approach assumes frictionally dominated flow and vertically varying current velocity on the scale of the Ekman boundary layer. The approximation of the velocity variation with depth is consequently derivable in terms of orthogonal basis functions from the sea surface kinematic and dynamic boundary conditions; specifically, the viscous momentum and shear equations evaluated at the sea surface. The inference procedure developed is demonstrated with sea surface data obtained in the coastal High-Resolution Remote Sensing Experiment on the continental shelf off Cape Hatteras. Despite uncertainties in the surface measurements, qualitative agreement is obtained between the inferred subsurface current and the current measured in situ. The sensitivity of the inference to the measurement uncertainties as well as to the model assumptions is investigated, and the inferred result is found to be generally robust.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater

Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard  turbulence closure model. This study aims to explore the ability of a time splitting method ...

متن کامل

Shallow groundwater thermal sensitivity to climate change and land cover disturbances: derivation of analytical expressions and implications for stream temperature modeling

Climate change is expected to increase stream temperatures and the projected warming may alter the spatial extent of habitat for cold-water fish and other aquatic taxa. Recent studies have proposed that stream thermal sensitivities, derived from short-term air temperature variations, can be employed to infer future stream warming due to longterm climate change. However, this approach does not c...

متن کامل

Use of ‘velocity projection’ to estimate the variation of sea-surface height from HF Doppler radar current measurements

The technique of ‘velocity projection’ (J. Geophys. Res. 106 (2001) 6973) is used to estimate the sea-surface height field and its change over time from measurements of surface velocity made using a shore-based HF Doppler radar over a 30 30-km region of the continental shelf located near the mouth of the Chesapeake Bay (USA). Projected current profiles are compared with measured currents from a...

متن کامل

Wave-current Interactions in the Shallow Water Wave Limit and Shore-connected Ridges

We present a theory for the interactions of waves and currents which results from depth-averaging the wave-driven circulation model proposed by McWilliams and Restrepo. This circulation model couples the gravity wave eld to oceanic scale ows. It speciically identiies the the drift velocity due to the gravity waves as the primary eeect of waves on the long-time dynamics of the currents. The form...

متن کامل

Seafloor Topography Modelling in Northern Adriatic Sea Using Synthetic Aperture Radar

Underwater bottom topography may be visible on Synthetic Aperture Radar (SAR) images through the radar signature of ocean surface currents. Using SAR images and a limited number of echo soundings it is possible to constructs accurate depth maps, greatly reducing the costs of bathymetric surveying. Based on shallow water bathymetry synthetic aperture radar (SAR) imaging mechanism and the microwa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001